大域微分幾何(中)──活動標架法(二版)
《大域微分幾何》全書共三卷。內容主要對象是彎曲的空間,上卷大體是作者多次在臺大數學研究所授課的講稿,以此為基礎,展開中、下両卷,進入大域幾何研究的專業。
這套書三卷分別是「Riemann幾何基礎」、「活動標架法」(moving frames)及「幾何變分學」,涵蓋九大篇,共三十章,並於上卷與下卷加入〈前篇〉及〈衍篇〉各三章,以作為微分幾何「基礎入門」與「延伸進階學習」之用。
中卷「活動標架法」先介紹「張量的微積分」,從「平均」的視角出發,導入均曲率、Diverence與Laplacian等相關的幾何概念,刻劃結構方程的意涵。然後藉由微分式(differential form)的運算,發展「活動標架法」,有效處理彎曲空間的大域問題。
◎本書特色
1. 全書以深入淺出的解說方式,藉由直觀,逐步引入艱深的幾何硏究。
2. 問題中心論:內容的鋪陳,經常圍繞著自然的提問。
3. 採二維計算方式呈現數學式子的推演,使學習者一目瞭然,容易掌握運算過程。
4. 適合「微分幾何學」進階研究,及天文物理、生化、土木領域之延伸應用。
中卷前言
《大域微分幾何》三卷書二版序
中卷 活動標架法
篇四 張量的微積分
第13章 平均的概念
第14章 子流形,均曲率與Laplacian
第15章 外微分與Divergence定理
篇五 Riemann幾何的結構
第16章 結構方程
第17章 張量的共變微分
第18章 活動標架法的運算基礎
篇六 活動標架法與大域幾何
第19章 高維流形的Gauss-Bonnet-Chern定理
第20章 Bochner's Technique
第21章 Laplacian的特徵值
附錄
全書參考文獻
全書索引